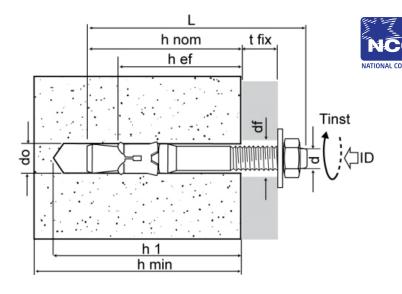


TDS | 1023.1

Heavy Duty Through-bolt Anchor


BASE MATERIALS

- Concrete
- Solid stone

FRIULSIDER
OUR FIXING FACTORY

Materials	
Туре	3DG *Special anti-corrosion coating
Anchor body	Steel grade min. Class 5.8
Clip	Stainless steel AISI 316 (A4)
Hex nut	DIN 934 grade 8
Washer	DIN 125/1
Coating	> 10µm ISO 4042*

Anchor body mechanical characteristics						
Anchor diameter			M20			
Tensile stressed cross-section	$A_{s,N}$	[mm²]	214			
Shear stressed cross-section	$A_{s,V}$	[mm²]	245			
Zinc plated anchor body - bending moment	М	[Nm]	167			

 t_{fix} = fixture thickness d_o = hole diameter

h_{nom} = nominal embedment depth

h_{ef} = minimum depth of anchorage
d_f = hole diameter of fixing element

= minimum hole depth

d_f = hole diameter of fixing elements
h_{min} = minimum support thickness

T_{inst} = torque

d = bolt diameter

L = anchor length

sw = wrench

ID = ident. mark, product length

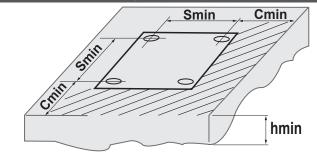
	d	size d x L [mm]	ID	tfix [mm]	do [mm]	h1 [mm]	hnom [mm]	hef [mm]	df [mm]	hmin [mm]	Tinst [Nm]	SW	Part No.
M20	20	M20 x 170	Α	30	20	120	130 115	95	22	200	160	30	FM75320170G (75320c20170)
	$\overline{}$	M20 x 215	В	75		130							FM75320215G (75320c20215)

TDS | 1023.1

DESIGN 1) and RECOMMENDED 2) LOADS

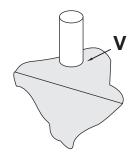
Single anchor with large anchor spacing and edge distances in non-cracked concrete C20/25

Design Method acc.to ETAG001 annex C.


Anchor diameter	Depth of anchorage	oth of anchorage Spacing Edge distance		Ten N _{rt} 1)	sion N ²⁾
M20	95 mm	290 mm	145 mm	26.6 kN	19.0 kN

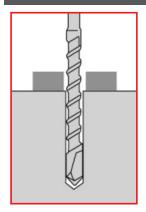
Shear					
V _{rd} 1)+3)	V ²⁾⁺³⁾				
34.3 kN	24.5 kN				

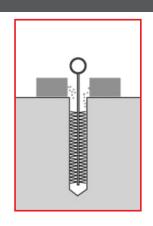
1kN = 100 kgf


- 1.) The design loads Nrd and Vrd are derived from the characteristic loads from ETA-13/0367 certification and are inclusive of the partial safety factors γ_m (see ETA).
- 2.) The recommended loads N and V are derived from the characteristic loads from ETA-13/0367 certification and are inclusive of the partial safety factors γ_1 =1.4 and γ_m (see ETA).
- 3.) Shear values valid with distance from the edge C ≥10xhef.

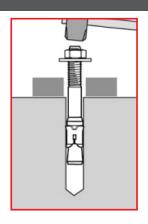
Minimum installation parameters

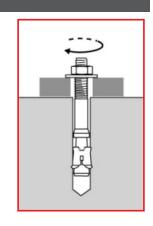
Anchor diameter		M20
Depth of anchorage	h _{ef} [mm]	95
Minimum distance between an- chors	S_{min} [mm]	200
Minimum distance from edge	C _{min} [mm]	145


Example (according to annex C of the ETAG 001) of shear load in C20/25 concrete with edge distance C_{min}


Anchor diameter		M20
Depth of anchorage	h _{ef} [mm]	95
Minimum distance from edge	C _{min} [mm]	145
Shear C = C_{min}	V _{rd,cmin} [kN]	17.1
Siledi C - C _{min}	V_{cmin} [kN]	12.2

The load values are only valid if the installation has been carried out correctly. The design engineer is responsible for the designing and calculation of the fixing. The designing and calculation of the anchorage should be carried out in accordance with annex C, of the ETAG001, design method A.


Installation


1. Drill hole with correct drill bit to the correct hole depth

Clean dust and other material from hole

3. Install anchor through fixture into position

4. With correct size socket tighten anchor to the specified torque